Human sperm swimming in a high viscosity mucus analogue.

نویسندگان

  • Kenta Ishimoto
  • Hermes Gadêlha
  • Eamonn A Gaffney
  • David J Smith
  • Jackson Kirkman-Brown
چکیده

Remarkably, mammalian sperm maintain a substantive proportion of their progressive swimming speed within highly viscous fluids, including those of the female reproductive tract. Here, we analyse the digital microscopy of a human sperm swimming in a highly viscous, weakly elastic mucus analogue. We exploit principal component analysis to simplify its flagellar beat pattern, from which boundary element calculations are used to determine the time-dependent flow field around the sperm cell. The sperm flow field is further approximated in terms of regularised point forces, and estimates of the mechanical power consumption are determined, for comparison with analogous low viscosity media studies. This highlights extensive differences in the structure of the flows surrounding human sperm in different media, indicating how the cell-cell and cell-boundary hydrodynamic interactions significantly differ with the physical microenvironment. The regularised point force decomposition also provides cell-level information that may ultimately be incorporated into sperm population models. We further observe indications that the core feature in explaining the effectiveness of sperm swimming in high viscosity media is the loss of cell yawing, which is related with a greater density of regularised point force singularities along the axis of symmetry of the flagellar beat to represent the flow field. In turn this implicates a reduction of the wavelength of the distal beat pattern - and hence dynamical wavelength selection of the flagellar beat - as the dominant feature governing the effectiveness of sperm swimming in highly viscous media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity.

A pre-requisite for sexual reproduction is successful unification of the male and female gametes; in externally-fertilising echinoderms the male gamete is brought into close proximity to the female gamete through chemotaxis, the associated signalling and flagellar beat changes being elegantly characterised in several species. In the human, sperm traverse a relatively high-viscosity mucus coatin...

متن کامل

Spermatozoa scattering by a microchannel feature: an elastohydrodynamic model

Sperm traverse their microenvironment through viscous fluid by propagating flagellar waves; the waveform emerges as a consequence of elastic structure, internal active moments and low Reynolds number fluid dynamics. Engineered microchannels have recently been proposed as a method of sorting and manipulating motile cells; the interaction of cells with these artificial environments therefore warr...

متن کامل

Two-dimensional slither swimming of sperm within a micrometre of a surface

Sperm motion near surfaces plays a crucial role in fertilization, but the nature of this motion has not been resolved. Using total internal reflection fluorescence microscopy, we selectively imaged motile human and bull sperm located within one micron of a surface, revealing a distinct two-dimensional (2D) 'slither' swimming mode whereby the full cell length (50-80 μm) is confined within 1 μm o...

متن کامل

Predominance of sperm motion in corners

Sperm migration through the female tract is crucial to fertilization, but the role of the complex and confined structure of the fallopian tube in sperm guidance remains unknown. Here, by confocal imaging microchannels head-on, we distinguish corner- vs. wall- vs. bulk-swimming bull sperm in confined geometries. Corner-swimming dominates with local areal concentrations as high as 200-fold that o...

متن کامل

The movement of human spermatozoa in cervical mucus.

Movement characteristics of freely swimming spermatozoa were studied with high-speed cinemicrography. At 21 degrees C, flagellar beat frequency was higher in midcycle human cervical mucus than in native semen or Tyrode's solution; the beat shape differed, possessing diminished amplitude and wavelength. Although the spermatozoa swam straighter in the mucus, the progressive swimming speeds did no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 446  شماره 

صفحات  -

تاریخ انتشار 2018